Sensitized near infrared emission of g-C₃N₄: Yb³⁺ composite

WENBIN XIA, GUOJUN ZHU, XUE JUN GAO, XIANGLIANG JIN, XIAOLIANG YANG^{*}, SIGUO XIAO School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China

 $g-C_3N_4$: Yb³⁺ composite has been prepared by a simple method using melamine and YbCl₃ as raw materials. The introduced Yb³⁺ ions are composited with $g-C_3N_4$ and significantly cause the crystal lattice distortion in $g-C_3N_4$, which is supported by first principles calculation and XRD patterns. The $g-C_3N_4$: Yb³⁺ composite can absorb blue-violet light and give near-infrared light at around 1 μ m. Energy transfer sensitization from $g-C_3N_4$ to Yb³⁺ is demonstrated on the base of the excitation and emission spectra. The result refers a new approach for conversion of short wavelength light into near infrared emission.

(Received September 12, 2016; accepted August 9, 2017)

Keywords: Rare-earth, Graphitic-C₃N₄, Sensitization, Structure distortion, First principle method

1. Introduction

Trivalent rare earth ions (RE³⁺) doped luminescence and laser materials in various forms such as glass, crystal and nano powder are of interest not only for basic research, but also for practical application [1-6]. Among the rare earth ions, the Yb³⁺ ion has the simplest energy level scheme, constituting of only two ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$ levels [7]. There is no excited state absorption, no cross-relaxation process and no more up-conversion internal mechanism able to reduce the effective emission cross section. Therefore, Yb^{3+} ion is commonly considered as an activator ion of big prospect for construction of laser and luminescence materials operating at about $1\mu m$. Regretfully, the f-f transitions of Yb³⁺ ion is Laporte forbidden with low absorption coefficients, which limits its pump efficiency. Sensitization might be an effective pathway to increase the 4f-4f absorption of Yb³⁺ and then makes luminescence generation more efficient. The photoluminescence properties of Yb³⁺ ions sensitized by other rear earth ions like Er, Tb, Pr, Tm, Ho and Ce [6, 8-16] have been widely reported. However, the narrow absorption bands and weak absorption efficiencies of these sensitizing ions result in the unsatisfactory sensitization effect.

As we know, the semiconductors with direct band gap have strong absorption in short wavelength region. It is believed that the direct band gap semiconductors could act as both host and ideal sensitizer of Yb^{3+} , enhancing the excitation efficiency of the Yb^{3+} doped semiconductor phosphors. These near infrared emitting Yb^{3+} doped semiconductor phosphors are attractive because they have wide potential applications in many fields such as lasers [17, 18], solar spectral converters [19, 20], and biological fluorescent probes, [21, 22] etc. In previous studies, the Yb^{3+} near-infrared emission sensitized by semiconductor such as InP, GaP and GaAs were observed. But in those semiconductor, the low doping contention leads to the relatively weak luminescence intensity of Yb^{3+} emission [23, 24].

In the recent years, graphitic carbon nitride $(g-C_3N_4)$ as one of carbon semiconductors has also been widely studied because of its unique combination of various physicochemical properties such as semi-conductivity, special optical feature, energy-storage capacity, and gas-adsorption capacity. [25-29] It is noted that the direct band gap semiconductor graphene-like g-C₃N₄ has good thermal and chemical stability and has large specific surface area and porosities [30] with large number of active chemical sites on the surface and uniform pore size. Especially, the moderate bandgap energy (2.95 eV) means that it can efficiently absorb the blue-violet light. At the meantime, relatively high content of Yb³⁺ ions are probably inserted into the interstitial positions of g-C₃N₄ by coordinating to the N atoms when the Yb³⁺ ions are introduced into the g-C₃N₄ matrix. [29, 31, 32] Thus the luminous energy absorbed by $g-C_3N_4$ might be transferred to enough Yb^{3+} ions in the Yb^{3+} doped $g-C_3N_4$ material, resulting in strong luminescence at about 1µm. So it is predicted that $g-C_3N_4$: Yb³⁺ composite might be a good near infrared phosphor.

In this paper, the g-C₃N₄ was prepared by calcining melamine. Then the g-C₃N₄: Yb³⁺ composite was prepared by liquid-phase synthesis method. In order to reveal the position of the doped Yb³⁺ ions in g-C₃N₄ and their influence on g-C₃N₄ structure, first-principles simulations and XRD measurement have been performed. Near infrared emission originating from Yb³⁺ sensitized by C₃N₄ is demonstrated in the g-C₃N₄: Yb³⁺ composite.

2. Experimental

2.1. Materials synthesis

Sample preparation included the following steps. Firstly, the $g-C_3N_4$ bulk material was obtained by calcining melamine at 550 °C for 4h and the prepared $g-C_3N_4$ bulk material was ground for 1h in a ball mill with zirconia

balls. Then a certain amount of $g-C_3N_4$ power obtained was put into water and ultrasonically treated for 2 h. After being stirred with a magnetic stirrer for 12 h, bulk $g-C_3N_4$ was exfoliated into thin sheets and disintegrated into a homogeneous suspension. Then the YbCl₃ solution was instilled into the suspension and stirred at room temperature for 30 min. The g-C₃N₄ and YbCl₃ mixed suspension was dried at 100 °C in air to obtain the precursor. Finally the precursor was calcined at 400 °C for 1h and the target g-C₃N₄: Yb³⁺ composite was obtained when it cooled down to room temperature.

2.2. Characterization

The crystal structure of samples were measured by X-ray diffraction (XRD) on a Bruker D8 advanced equipment using Cu tube with Cu/K (k = 0.1541 nm) radiation. The morphology of the synthesized samples was characterized using a JEM-2100 transmission electron microscopy (TEM) operating at accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) was measured on a K-Alpha 1063 (Thermo Fisher Scientific) with a focused monochromatic Al Ka X-ray beam (12 kV, 5×10⁻⁹ 6 mA, torr). The e xc itation and visible-near-infrared emission spectra were measured with an FLS920 (Edinburgh) Spectrometer at room temperature. In order to guarantee the accuracy of experimental data, the spectroscopic measurement condition was kept consistent for all the samples.

3. Results and discussion

The X-ray diffraction (XRD) patterns of $g-C_3N_4$: Yb³⁺ samples with different Yb³⁺ content are shown in Fig. 1. The diffraction pattern of each sample shows the strongest diffraction peak at 27.40° corresponding to the (002) interplanar (lattice distance = 0.326 nm), which is well-known for graphite-like packing characteristic of g-C₃N₄ materials.[33, 34] The weak peak at 13.12° can be assigned to (100) in-planar that arises from the in-plane ordering of tri-s-triazine units.[33, 34] It can be seen from the Fig. 1 that the diffraction (XRD) patterns of prepared g-C₃N₄: Yb³⁺ samples mainly shows the peaks of pure g-C₃N₄ and no impurity of other Ytterbium compound is observed. Moreover, no shift of diffraction peak position has been observed with the introduction of Yb^{3+} , even at relative high Yb^{3+} concentration that the molar ratio of Yb³⁺: C_3N_4 reaches to 0.4. This indicates that the introduced Yb^{3+} ions have been composited with g- C_3N_4 and have not changed the basic structure of C3N4. However, it is found that the peak at 27.40° tends to weaken when the Yb³⁺ content increases. Additionally, the full width at half maximum (FWHM) is also broadens with Yb³⁺ content increasing. The value of FW HM of the pure $g-C_3N_4$ is about 2.29 degree, and the value of FWHM increases from 2.54 to 2.83 degree with Yb³⁺ content increasing from 0.1 to 0.4. Those results suggest that the introduced Yb³⁺ ions can significantly cause the crystal lattice distortion in $g-C_3N_4$.

Fig. 1. TEM images of g- C_3N_4 : $Yb_{0.2}$ sample. Power X-ray diffraction patterns of g- C_3N_4 : Yb_x (x=0.0, 0.1, 0.2, 0.3, 0.4) samples

The TEM images of the g-C₃N₄: Yb³⁺ composite are shown in Fig. 1. The TEM images show that the prepared composite have a smooth planar structure. This structure has a large specific surface and porosities, which is benefit for the adsorption of RE³⁺ ions in g-C₃N₄. The XPS of g-C₃N₄: Yb_{0.2} was measured to examine the valence state of Yb element in the composite. According to the smoothed XPS curve shown in Fig. 2, the core level binding energy of Yb_{4d} is estimated to be about 186 eV, similarly to the binding energy of Yb_{4d} in Yb₂O₃. [35] This means that the Yb element predominantly behaves as the state of Yb³⁺ in the g-C₃N₄: Yb³⁺ composite.

Fig. 2. Yb_{4d}XPS spectrum of g-C₃N₄: Yb_{0.2} sample

In fact, the ionic radius of Yb³⁺ is much larger than that of C and N. Therefore, it is difficult for the Yb³⁺ ions to enter the g-C₃N₄ lattice by substitutional doping. The previous studies of Fe/Ce/Co-doped g-C₃N₄ suggest that Fe, Ce and Co are inserted into the interstitial position of g-C₃N₄ and stabilized in the electron-rich g-C₃N₄ structure mainly through Fe/Ce/Co-N bonds [32, 36, 37].

To better understand the possible position of Yb³⁺ in the g-C₃N₄: Yb³⁺ composite, a first-principles study on the structure properties of Yb atoms absorbed g-C₃N₄ monolayer has also been performed. To simulate the interaction between the adatoms and the g-C₃N₄ sheet, the structure of Yb atom absorbed g-C₃N₄ was mimicked as a super cell composed of 2×2 g-C₃N₄ super-cell with one Yb atom placed on 3Å over the g-C3N4 plane (Fig. 3 (a) (b)). The molar ratio of Yb³⁺: C₃N₄ was taken as 0.25 for simplify the calculation.

The first-principle calculations were carried out with the Vienna ab-initio simulation package (VASP)[16, 38], based on spin-polarized density functional theory (DFT). The interaction between valence electrons and ionic cores was described within the framework of the projector augmented wave (PAW) method [9, 39]. The spin-polarized generalized gradient approximation (GGA) was used for the exchange-correlation potential in the form proposed by Perdew, Burke, and Ernzerhof (PBE) [15]. To mimic the appropriate environment for an isolated sheet, we used a slab model that has periodic boundary conditions with a vacum space of 20 Å along the z axis direction. The structures were fully relaxed using the conjugated gradient method. For the Brillouin zone sample, the reciprocal space was prensented by the Monkhost-Pack special k-points method [40] of 3×3×1 mesh for geometry relax, and 6×6×1 mesh for static calculation. And the convergence criteria were set to 1×10⁻⁵eV and 0.05eV/Å for energy and Hellman-Feynman forces, respectively. The energy cutoff for the plane wave basis expansion was set to 450eV. The lattice constant of the unit cell for the g-C₃N₄ monolayer was select to 7.135 Å, which was consistent with previous studies [41, 42]. As shown in Fig. 3(a), there we selected three representative sites for Yb to simulate the interaction between the adatoms and the g-C₃N₄ sheet, and the Yb atoms were initially placed on 3\AA over the g-C₃N₄ plane in this three different situations. After full relaxation, the Yb moved to a relatively stable position. Only in the case that Yb was placed in C site, the Yb fell into the pore site, inserted in interstitial position of g-C₃N₄ sheet, as shown in the schematic diagram in Fig. 3(c). While in the remaining cases the Yb was still around 2\AA over the g-C₃N₄ plane after full relaxation.

The stabilities of the Yb atoms on $g-C_3N_4$ can be estimated through their total energy of whole system consisting of Yb and $g-C_3N_4$. The total energies is -117.87438eV, -118.21376eV and -122.64826eV in the case of A, B and C, respectively. Obviously, site with the minimum total energy is referred to as the favored site. Therefore, the pore site (C1) is the most possible position of the three adsorption sites considered. The result suggests that the Yb³⁺ ions are most likely inserted into the interstitial position of $g-C_3N_4$. It is also noticed that original coplanar C and N atoms deviate from the plane along the z axis direction when an Yb³⁺ ion is inserted the interstitial position (C1 site) of $g-C_3N_4$ according to the simulation results. The maximum deviation is about 1.03Å. This means that the doped Yb³⁺ ions have caused severe structural distortion of $g-C_3N_4$ monolayer, just as show in Fig. 3(c) (d). The simulation results are identical with the XRD measurement.

Fig. 3. The structure diagrams of Yb doped g- C_3N_4 sheet, top view (a) and side view (b) of the initial structure; side view (c) of relaxation processes diagram; (d) is bird's eye view, the structure of Yb at C1 site after relaxation. Here the black, blue, and blue-green spheres represent carbon, nitrogen, and ytterbium atoms, respectively

The diffuse reflection spectra of $g-C_3N_4$: Yb_x (x=0.0, 0.1, 0.2, 0.3) is presented in Fig. 4(a). It can be seen that the composite has a strong absorption of the blue-violet light. There also exists "red shift" phenomenon for the diffuse reflection spectra of $g-C_3N_4$ with the doping of Yb³⁺ ion, which might be caused by lattice distortion of $g-C_3N_4$ or the generation of defects in the band gap of $g-C_3N_4$ during the process of compositing the $g-C_3N_4$ and Yb³⁺.

Fig. 4. (a) Diffuse reflection spectra of $g-C_3N_4$: Yb_x (x=0.0, 0.1, 0.2, 0.3) samples. (b). The excitation and emission spectra of the $g-C_3N_4$: $Yb_{0.2}$ sample, and the energy-transfer and electron-transition scheme of $g-C_3N_4$ and Yb^{3+}

As shown in Fig. 4(b), excited into its absorption band by wavelength of 410 nm, pure $g-C_3N_4$ gives an intense broad emission band in range of 420 nm-650 nm. The excitation spectrum monitored at 470 nm of pure $g-C_3N_4$ sample shows a broad excitation spectra band ranging from ultraviolet to 420 nm, corresponding well with its absorption region. In the $g-C_3N_4$: Yb_{0.2} composite, the excitation at 410 nm can give a new luminescence band locating at 980 nm emitted by Yb³⁺. It is noteworthy that the shape of the excitation spectrum of the $g-C_3N_4$: Yb_{0.2} composite monitored at 980 nm is quite similar to that of pure $g-C_3N_4$ sample monitored at 470 nm (see Fig. 4(b)). The result indicates that the energy transfer from $g-C_3N_4$ to Yb^{3+} occurs when $g-C_3N_4$ has been excited. The results suggest that the g-C3N4: Yb^{3+} can convert light in blue-violet region into the near-infrared emission.

Based on the diffuse reflection spectra (Fig. 4(a)), the band gap of $g-C_3N_4$ is estimated to 2.95 eV. Therefore, the luminescence of $g-C_3N_4$ might be ascribed to the radiative transition originating from defect levels in the band gap of g-C₃N₄. Firstly, the electrons are excited into conduction band by the irradiation of the blue-violet light, and then the excited electrons rapidly relax to the defect levels in the band gap. Then blue emission occurs by electron transition from defect levels to valence band. When the Yb³⁺ ions are inserted into the interstitial position of g-C₃N₄, the energy absorbed by g-C₃N₄ can be transferred to Yb^{3+} . The Yb^{3+} ions are excited to their ${}^{2}F_{5/2}$ states in the energy transfer between the defect levels of g-C3N4 and Yb³⁺ ions. When the Yb³⁺ ions at excited states return to their ground states, near-infrared light at around 980 nm emits. The mechanism of near-infrared emission of Yb³⁺ sensitized by $g-C_3N_4$ in the $g-C_3N_4$: Yb_{0.2} composite is illustrated in Fig. 4(b).

4. Conclusions

In this work, g-C₃N₄: Yb³⁺ composite has been prepared. The g-C₃N₄: Yb³⁺ composite exhibits strong absorption of blue-violet light and the energy transfer sensitization of g-C₃N₄ to Yb³⁺ can give near-infrared emission of Yb³⁺ at around 1 μ m. The investigation provides a meaningful new material that can convert light from short wavelength region to near-infrared one, which opens up possibilities for application such as solar spectral conversion and blue-violet light detection.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51372214 & 61233010).

References

- X. Wang, J. Zheng, Y. Xuan, X. Yan, Opt. Express 21(18), 21596 (2013).
- [2] X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Advances 5(105), 86219 (2015).
- [3] X. Chen, J. Zhao, L. Yu, C. Rong, C. Li, S. Lian, Journal of Luminescence 131, 2697 (2011).
- [4] V. B. Taxak, R. Kumar, J. K. Makrandi, S. P. Khatkar, Displays 30, 170 (2009).
- [5] V. B. Taxak, S. P. Khatkar, S. D. Han, R. Kumar, M. Kumar, Journal of Alloys & Compounds 469, 224 (2009).
- [6] H. J. Seo, W. Jing, Q. Lin, P. Cai, T. Vu, X. Wang, X. Yan, Y. Bu, Optics Letters 41(22), 5314 (2016).
- [7] X. Wang, S. Xiao, X. Yang, J. Ding, Journal of

Materials Science 43(4), 1354 (2008).

- [8] X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, H. J. Seo, Opt. Express 24(16), 17792 (2016).
- [9] D. E. Van, M. Bryan, L. Aarts, A. Meijerink, Advanced Materials 21(30), 3073 (2009).
- [10] X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, J. Qiu, Applied Physics B 96(1), 51 (2009).
- [11] K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, M. Yin, Optics Express 19(3), 1749 (2011).
- [12] D. C. Yu, X. Y. Huang, S. Ye, Q. Y. Zhang, Journal of Alloys & Compounds 509, 9919 (2011).
- [13] J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, Y. X. Zhuang, J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, Y. X. Zhuang, Optical Materials **32**, 998 (2010).
- [14] L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, Z. Zheng, Optical Materials 36, 1065 (2014).
- [15] X. Wang, C. S. Liu, T. Yu, X. Yan, Physical Chemistry Chemical Physics 16(26), 13440 (2014).
- [16] X. Huang, D. Chen, L. Lin, Z. Wang, Optik -International Journal for Light and Electron Optics 125, 565 (2014).
- [17] Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, A. K. Kar, Optics Letters **37**(16), 3339 (2012).
- [18] A. A. Lagatsky, O. L. Antipov, W. Sibbett, Opt. Express 20(17), 19349 (2012).
- [19] B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, X. Fan, The Journal of Physical Chemistry C 116(21), 11652 (2012).
- [20] T. C. Liu, G. Zhang, X. Qiao, J. Wang, H. J. Seo, D. P. Tsai, R. S. Liu, Inorg. Chem. **52**(13), 7352 (2013).
- [21] N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, ACS Nano 5, 8665 (2011).
- [22] G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, ACS Nano 6(9), 8280 (2012).
- [23] W. Körber, A. Hangleiter, Applied Physics Letters 52(2), 114 (1988).

- [24] H. Ennen, G. Pomrenke, A. Axmann, Journal of Applied Physics 57(6), 2182 (1985).
- [25] X. L. Zhang, C. Zheng, S. S. Guo, J. Li, H. H. Yang,
 G. Chen, Anal. Chem. 86(7), 3426 (2014).
- [26] L. Xu, W.-Q. Huang, L.-L. Wang, Z.-A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan, G.-F. Huang, Chemistry of Materials 27(5), 1612 (2015).
- [27] X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135(1), 18 (2013).
- [28] Q. Xiang, J. Yu, M. Jaroniec, The Journal of Physical Chemistry C 115(15), 7355 (2011).
- [29] S. Min, G. Lu, The Journal of Physical Chemistry C 116(37), 19644 (2012).
- [30] S. S. Park, S. W. Chu, C. Xue, D. Zhao, C. S. Ha, Journal of Materials Chemistry 21(29), 10801 (2011).
- [31] X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Journal of the American Chemical Society 131(33), 11658 (2009).
- [32] R. Jin, S. Hu, J. Gui, D. Liu, Bulletin of the Korean Chemical Society 36(1), 17 (2015).
- [33] D. Jiang, J. Zhu, M. Chen, J. Xie, Journal of Colloid and Interface Science 417, 115 (2014).
- [34] D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, J. Xie, Dalton Transactions 42(44), 15726 (2013).
- [35] T.-M. Pan, C.-H. Cheng, C.-D. Lee, Journal of The Electrochemical Society 156(5), J108 (2009).
- [36] Q. Liu, J. Zhang, Langmuir 29(11), 3821 (2013).
- [37] X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Metal-Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material, Advanced Materials 21(16), 1609 (2009).
- [38] X. Wang, J. Zheng, Y. Xuan, X. Yan, Opt. Express 21(18), 21596 (2013).
- [39] P. E. Blöchl, Physical Review B 50(24), 17953 (1994).
- [40] H. J. Monkhorst, J. D. Pack, Physical Review B 13(12), 5188 (1976).
- [41] Y. Zhang, Z. Wang, J. Cao, Journal of Materials Chemistry C 2(41), 8817 (2014).
- [42] Q. Liu, J. Zhang, Langmuir 29(11), 3821 (2013).

^{*}Corresponding author: xiaoliangy@xtu.edu.cn